More than eight months after the underwater volcano erupted near Tonga on January 14, scientists are still analyzing the effects of the massive blast and discovering it could warm the planet.
Recently, researchers calculated that the Hunga Tonga-Hunga Ha’apa eruption ejected a staggering 50 million metric tons (45 million metric tons) of water vapor into Earth’s atmosphere, in addition to copious amounts of ash and volcanic gases. That massive steam injection increased the amount of moisture in the global stratosphere by about 5% and could trigger a cycle of stratospheric cooling and surface warming — and those effects could continue for months, according to a new study.
Tonga’s eruption, which began on January 13 and peaked two days later, was the strongest seen on Earth in decades (opens in new tab). The blast extended 162 miles (260 kilometers) and ejected columns of ash, steam and gas more than 12 miles (20 km) into the air, according to the National Oceanic and Atmospheric Administration (NOAA). (opens in new tab)).
Related: Tonga’s massive volcanic eruption created record-breaking winds at the edge of space
Large volcanic eruptions typically cool the planet by spewing sulfur dioxide into the upper layers of Earth’s atmosphere, which filters solar radiation. Rock and ash particles can also temporarily cool the planet by blocking sunlight, according to the National Science Foundation’s University Corporation for Atmospheric Research (opens in new tab). In this way, widespread and violent volcanic activity in Earth’s distant past may have contributed to global climate change and triggered mass extinctions millions of years ago.
Recent eruptions have also featured volcanoes (opens in new tab)‘Planet cooling powers. When Mount Pinatubo in the Philippines blasted its peak in 1991, aerosols were emitted from this powerful volcanic explosion (opens in new tab) lowered global temperatures by about 0.9 degrees Fahrenheit (0.5 degrees Celsius) for at least a year, Live Science previously reported.
Tonga emitted about 441,000 long tons (400,000 long tons) of sulfur dioxide, about 2% of the amount that Mount Pinatubo spewed out (opens in new tab) during the 1991 eruption. But unlike Pinatubo (and most large volcanic eruptions that occur on land), Tonga’s underwater volcanic plumes sent “significant amounts of water” into the stratosphere, the zone extending about 50 km above the Earth’s surface extending down to about 4 to 12 miles (6 to 20 km), according to the National Weather Service (NWS (opens in new tab)).
In underwater volcanoes, “submarine eruptions can derive much of their explosive energy from the interaction of water and hot magma,” throwing huge amounts of water and steam into the eruption column, scientists wrote in a new study published Sept. 22 in was published Science Journal (opens in new tab). Within 24 hours of erupting, the cloud extended 17 miles (28 km) into the atmosphere.
The researchers analyzed the amount of water in the plumes using data collected by instruments called radiosondes, which were attached to weather balloons and sent up into the volcanic plumes. As these instruments rise through the atmosphere, their sensors measure temperature (opens in new tab)air pressure and relative humidity and, according to the NWS, transmits this data to a receiver on the ground (opens in new tab).
Atmospheric water vapor absorbs solar radiation and emits it again as heat; With tens of millions of tons of Tonga’s moisture now floating in the stratosphere, the Earth’s surface will heat up — although by how much, the study says is unclear. However, because the vapor is lighter than other volcanic aerosols and less affected by gravity, this warming effect will take longer to dissipate, and surface warming could continue “for months to come,” the scientists said.
Previous investigations into the eruption found that Tonga emitted enough water vapor to fill 58,000 Olympic-size swimming pools and that this prodigious amount of atmospheric moisture could potentially weaken the ozone layer (opens in new tab)Live Science previously reported.
In the new study, the scientists also noted that these massive amounts of water vapor could actually alter chemical cycles that control stratospheric ozone, “however, detailed studies are needed to quantify the effect on ozone levels because other chemical reactions play a role.” can also play a role.”
Originally published on Live Science.
#million #tons #water #vapor #Tongas #eruption #warm #earth #years
Leave a Comment